何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

有时候,人类科学的发展需要超越传统的思维方式。在 20 世纪早期,物理学上的两次革命——爱因斯坦的相对论(首先是狭义的,然后是广义的)和量子力学——带来了对数学的需求,而所需要的工具仅用实数是满足不了的。从那时起,由实部和虚部组成的复数就与我们对宇宙的理解不可分割地纠缠在一起。

从数学上讲,当我们想到数字时,可以想到几种不同的分类方法:

  • 可数数字:1、2、3、4,等。这样的数字有无数个。
  • 自然数:0、1、2、3 等。这些数与可数数相同,但同时包括零。
  • 整数:…,3,2,1,0,1,2,3, 等。这看起来可能不多,但认识到我们可以有负数是一个巨大的突破,而且负数和正数一样多。整数包括所有的自然数和它们的负数。
  • 有理数:可以表示为一个整数除以另一个整数的任何数字。这包括所有的整数(可以表示为它们本身除以 1)以及每个整数之间无穷多的有理数。任何无限循环的小数都可以用有理数来表示。
  • 实数:包括所有的有理数以及所有的无理数,比如非完全平方的平方根,π,以及其他的无理数。任何有理数和任何无理数的和都是无理数,但两个无理数的和可能是有理数。

但是,尽管正数的平方根是实数,负数的平方根却没有明确的定义。至少,它还未被定义,直到数学家并发明了虚数来进行定义!

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

虚数和实数没什么两样,只不过可以乘以 i——或者说 √-1。数字也可以是复数,其中既有实部(a)也有虚部(b),通常用(a bi)表示。

现在你知道它们是什么了,下面 5 个是我认为关于虚数最有趣的事实!

1. i 的平方根既有实部也有虚部

一个负实数的平方根是纯虚数,但一个纯虚数的平方根必须同时有实部和虚部!下面是你证明自己的方法。你需要某个数的平方等于 √(-1)。假设它有一个实部 x 和一个虚部 y,所以我们可以把它写成(x yi),然后我们可以算出 x 和 y 的值是多少。

两边同时平方

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

现在我们让实部与实部对应,虚部与虚部对应。

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

通过这两个方程,我们可以把右边方程的 x 代入左边方程,

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

然后,我们便可以解出 y:

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

如你所见,有两种可能的解,如果我们用方程的右边(虚部)来解 x(两种情况下 y 的值都一样),我们得到两个解:

这就引出了下一个有趣的事实…

2. i 的任意根有多个不相同的解,N 次根有 N 个不相同的解

对于正实数,开方(即,第二个根)会给出两种可能的解:正的和负的。例如,√(1)可以是 1,也可以是-1,因为任意一个的平方都是 1。

但对于 i,也就是 √(-1),如果你想求根,你需要做一个多项式方程,就像我们上面做的那样。问题是,多项式方程的阶取决于我们取它的根。所以 i 的三、四、五次方根必须满足:

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

所以对于方程中的每一个 x 和 y 都有 3 个,4 个,5 个不同的解。例如,i 的三次方根的三个解为:

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

(尝试把它们立方,然后自己看吧!)这甚至还没有涉及更复杂点的分数,请继续往下看……

3. 分子或分母

在虚数分数中,i 究竟是在分子中还是分母中是很重要的。如果你考虑(-1)这个数,在分数形式的情况下,不管你是用(-1)/1 还是 1/(-1) 来考虑它,其结果都是(-1)。但对 i 来说事实并非如此!我来问你们,你们认为这个分数是多少?

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

看着它,你可能认为它等于 i,但实际上它是 -i!

想要证明吗?只要分数上下同时乘以一个 i,然后看吧。

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

所以当对复数分数进行合并或分解时要小心谨慎,必须遵循一些复杂的规则才能得到正确的结果。违反它们,你可以做各种疯狂的事情,比如证明 1 = -1,这样数学上称之为无效的证明

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

4. e、π 和 i 都是彼此关联的

在数学中,我们可以用极坐标来表示二维坐标空间,其中有一个距离原点的径向坐标(r)和一个极角(θ),就像这样:

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

▲ 极坐标与直角坐标之间的关系,图自维基

如果你不用 x 轴和 y 轴,而是用实轴和虚轴,你也可以做同样的事情,只不过这次角度 θ 可以带你在实平面与虚平面之间转换。

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

▲ 欧拉公式,图自维基

令人惊奇的是,如果我们在实轴上定位到 -1 的位置,我们会得到一个漂亮的恒等式:

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

就是这样:e、i 和 π 之间有一种简单而又出人意料的关系。证明如下:

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

这些关系在复变分析中经常出现。但是,如果你愿意考虑指数,最后一个事实是非常了不起的。

5. i 的 i 次方

i 的 i 次方是 100% 的实数。考虑上图中的方程(欧拉公式)——但我们不是在实轴上指向(-1)而是在虚轴上指向 i。在这种情况下,我们会得到一个等式:

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

如果我们想知道 i 的 i 次方是多少,我们需要做的就是对等式两边同时取 i 次方,

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

记得 i 的平方等于-1 吗,然后我们可以发现:

何为虚数?以及关于它的 5 个数学事实(何为虚数-以及关于它的 5 个数学事实问题)

大概就是实数 0.20787957635076……。

以上就是关于虚数的 5 个最有趣的数学事实!你有什么想分享的,或者对这些问题发表评论?请在下面留下评论。

本文作者: [遇见数学翻译小组] 核心成员 @方正Michael .

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至89291810@qq.com举报,一经查实,本站将立刻删除。
(0)
上一篇 2024年4月17日 上午11:52
下一篇 2024年4月17日 上午11:58

相关推荐

  • 舒兰实验小学排名

    舒兰实验小学排名: 一个学校的优劣,不仅仅是由成绩决定的。 舒兰实验小学是一所位于中国吉林省舒兰市的著名小学,是当地最受欢迎的学校之一。学校拥有优秀的师资力量和良好的教学环境,并且…

    教育百科 6天前
  • 初一孩子休学有害处吗

    初一孩子休学有害处吗? 在初一的时候,许多孩子正在经历人生中的一个转折点。他们开始面临学业的压力,需要适应新的学习环境,并逐渐适应高中生活。然而,有时候,孩子可能会感到压力过大,无…

    教育百科 2024年6月1日
  • 山东戒网瘾最好的学校

    山东戒网瘾最好的学校 山东是中国的一个省份,位于中国东部沿海地区。这里有着丰富的自然资源和人文遗产,同时也是中国经济发展的重要地区之一。然而,山东也面临着一些问题,例如网络成瘾和青…

    教育百科 2024年3月18日
  • 大专因病休学八年能复学吗

    大专因病休学八年能复学吗? 作为一名大专学生,你可能已经经历了许多挑战和困难。有时候,你的身体可能受到了疾病的困扰,这可能会阻碍你在学校的学业。如果你需要因病休学,这是一个很好的机…

    教育百科 2024年5月26日
  • 心理健康谈心记录小学

    心理健康谈心记录小学 小学生正处于身心发展的黄金时期,他们的心理健康状况直接影响着他们的学习和生活。因此,小学生的心理健康问题越来越受到人们的关注。在小学生心理健康教育中,谈心记录…

    教育百科 2024年11月5日
  • 初中孩子总拿死威胁父母

    初中孩子总拿死威胁父母的问题 近年来,越来越多的初中孩子开始表现出对父母的不尊重和威胁,这引起了社会各界的关注和担忧。这些初中孩子为什么会拿死威胁父母呢?我们需要从以下几个方面来探…

    教育百科 2024年11月8日
  • 休学后怎么面对同学(怎么在班上讲同学休学)

    在班上讲同学休学 最近,我认识了一个休学的同学。他叫做小明,是我们班级中的一员。但是,我最近发现他已经离开了学校,并且暂时不会回来了。 我想和大家分享一下我的感受。我知道这对小明和…

    教育百科 2024年6月27日
  • 如何查看什么时候休学的信息

    如何查看什么时候休学的信息 休学是一种逃避学习或工作的方式,但它也可能是一个明智的决定。如果你正在考虑休学,以下是一些查看休学信息的方法: 1. 学校网站 首先,你可以通过访问学校…

    教育百科 2024年11月5日
  • 临沂职业学院老校区

    临沂职业学院老校区 临沂职业学院老校区位于山东省临沂市兰山区解放路201号,是临沂市历史悠久的学府之一。校区占地面积占地面积1100亩,教职工400余人,学生45000余人。临沂职…

    教育百科 2024年10月28日
  • 孩子沉迷手机游戏怎么办孩子玩的单机游戏

    孩子沉迷手机游戏怎么办 随着科技的发展,手机游戏已经成为人们生活中不可或缺的一部分。然而,孩子沉迷手机游戏也成为一种普遍的问题。如果孩子沉迷于手机游戏,家长可能会感到困惑和担忧。在…

    教育百科 2024年8月13日

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注