第一百五十四夜,切线斜率与割线斜率(切线斜率和割线斜率)

对导数而言,切线是无法回避的重点。

切线是导数的背景,而切线源自割线,是割线的极限形式,故切线与割线的关系便成为命题者不可多得的素材。

以下便是一道关于切线斜率与割线斜率大小关系的试题,不妨试试。

第一百五十四夜,切线斜率与割线斜率(切线斜率和割线斜率)

一·围观:一叶障目,抑或胸有成竹

第一百五十四夜,切线斜率与割线斜率(切线斜率和割线斜率)

题目并列式设问,第一问,已知极值情况求参数的取值范围,题型常规,难度适中;第二问,比较函数图象上两点割线斜率与中点切线斜率的大小,作差构造函数或著名不等式放缩皆可。

二·套路:手足无措,抑或从容不迫

第一百五十四夜,切线斜率与割线斜率(切线斜率和割线斜率)第一百五十四夜,切线斜率与割线斜率(切线斜率和割线斜率)

三·脑洞:浮光掠影,抑或醍醐灌顶

本题考查导数的应用,涉及函数的单调性、函数的极值、不等式的证明等知识点,综合考查整体与部分的思想、转化与划归的思想,属于难题。

比较大小常用的方法有作差与作商,当然也可以借助著名不等式进行放缩。

法1,作差,然后对数单身狗,然后齐次化,然后换元构造辅助函数,通过辅助函数的单调性得出结论。

法2,对数平均不等式(A-L-G不等式),单刀直入,唾手可得。

无论是法1,还是法2中的x1小于x2都并非是必要的,仅仅是为了表述方便。

想必你已为对数平均不等式的魔幻而顶礼膜拜,为什么会这样呢?

原因在于对数平均数已然含有斜率的思想。

本题看似平淡无奇,实则匠心独具。它源自于沟通切线斜率与割线斜率的桥梁——拉格朗日中值定理

如果更进一步,还可得到如下定理:

第一百五十四夜,切线斜率与割线斜率(切线斜率和割线斜率)

四·操作:行同陌路,抑或一见如故

第一百五十四夜,切线斜率与割线斜率(切线斜率和割线斜率)

夜,那么长,以数学疗人寂寞,不是修行,就是罪过。

叨叨

2019.11.7

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至89291810@qq.com举报,一经查实,本站将立刻删除。
(0)
上一篇 2024年4月26日 上午10:49
下一篇 2024年4月26日 上午10:55

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注